Article 11414

Title of the article



Kryukov Dmitriy Borisovich, Candidate of engineering sciences, associate professor, sub-department of welding, foundry production and materials science, Penza State University (40 Krasnaya street, Penza, Russia),
Pryshchak Aleksey Valer'evich, Candidate of engineering sciences, associate professor, sub-department of welding, foundry production and materials science, Penza State University (40 Krasnaya street, Penza, Russia),
Gus'kov Maksim Sergeevich, Postgraduate student, Penza State University (40 Krasnaya street, Penza, Russia),

Index UDK



Background. The article describes the problem of obtaining the composite materials, featuring the increased complex of physical-mechanical properties. The work also reveals the relevance of modernization of the existing schemes of titaniumaluminum materials hardening.
Materials and methods. In order to study the influence of geometrical parameters of hardeners on composite material’s properties, the authors made a decision to develop a mathematical model of the material. The model was created and the boundary conditions were set in the SolidWorks program. Simulation was conducted in the CosmosWorks integrated application package. The samples of the layered composite material under investigation were subject to uniaxial modeling of destruction.
Results. The received results and diagrams of the stress-strain state confirmed the assumptions made at the beginning of research. The most important of which are the following: usage of perforated plates as a reinforcing layer is preferable compared to plates without perforation; the ultimate strength of the layered composite material with a reinforcing layer, perforated with conical holes, was 591 MPa, which is 19% higher than in technically pure titanium of similar thickness.
Conclusions. On the basis of the results it is possible to draw a conclusion on the need of carrying out further researches relating to verification of the received results of computer modeling on natural samples.

Key words

titanium intermetallic Ti3Al, layered composite material, reinforcing, perforated reinforcing layer.

Download PDF

1. Antsiferov V. N., Sokolkin Yu. V., Tashkinov A. A. Voloknistye kompozitsionnye materialy na osnove titana [Fibrous titanium-based composite materials]. Moscow: Nauka, 1990, 136 p.
2. Alyamovskiy A. A. CosmosWorks. Osnovy rascheta konstruktsiy v srede SolidWorks [CosmosWorks. Fundamentals of design calculation in SolidWorks environment]. Moscow: DMK Press, 2010, 784 p.
3. Kryukov D. B., Krivenkov A. O., Chugunov S. N., Vorob’ev E. W., Gus’kov M. S., Khorin A. V. and Okin M. A. Explosive Produktion of New Materials: Science, Technology, Business, and Innovations. Ed. by A. A. Deribas and Yu. B. Scheck. Cracow, Poland, 2014, pp. 114–115.
4. Arzamasov B. N., Makarova V. I., Mukhin G. G., Ryzhov N. M., Silaeva V. I. Materialovedenie: uchebnik dlya vuzov [Materials science: textbook for universities]. Moscow: MGTU im. N. E. Baumana, 2008, 646 p.
5. Khorin A. V., Rozen A. E., Los' I. S., Muyzemnek A. Yu., Zhuravlev E. A. Izvestiya vysshikh uchebnykh zavedeniy. Povolzhskiy region. Tekhnicheskie nauki [University proceedings. Volga region. Engineering sciences]. 2010, no. 1 (13), pp. 123–133.
6. Invention application RF № 2013119389/02. Method of the composite material production. Rozen A. E., Kryukov D. B., Kirin E. M., Gus'kov M. S., Khorin A. V., Usatyy S. G., Lyubomirova N. A., publ. 26 April 2013.
7. Grigolyuk E. I., Fil'shtinskiy L. A. Perforirovannye plastiny i obolochki [Perforated plates and shells]. Moscow: Nauka, 1970, 556 p.


Дата создания: 03.03.2015 09:55
Дата обновления: 03.03.2015 14:49